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4. Rationale:  
 
 Atrial fibrillation (AF) is the most common type of sustained cardiac arrhythmia and it is 
associated with substantial morbidity and mortality (1). Therefore, tools to predict the 
development of AF has substantial public health benefits. Many clinical risk scores 
(CRSs), such as the Framingham and CHARGE-AF scores, have been developed to predict risk 
of AF (2,3); however, their predictive performance have been moderate.  

Recent advances in genome-wide association studies (GWASs) have made it possible to 
construct polygenic risk scores (PRSs) to predict the genetic risk of cardiovascular events, and to 
combine PRSs with CRSs to improve risk prediction (4-6). In a prior AF risk prediction study, 
the addition of a PRS to the CHARGE-AF CRS resulted in an increase in C-index of 0.05 (7). 
However, another study showed that the addition of a PRS to a CRS did not result in C-index 
increase (8). Protein biomarkers have also been added to CRSs to improve AF risk prediction: 
addition of NT-pro-BNP and FGF-23 to a CRS improved the C-index by 0.07 (9). Furthermore, 
electrocardiogram (ECG)-based models have also been added to CRSs to improve AF risk 
prediction: addition of a convolution neural network-trained ECG model to the CHARGE-AF 
score resulted in a C-index increase of 0.03 (10).  

Despite the large number of studies examining AF risk prediction, few studies have 
integrated PRS, protein biomarkers and ECG-based models to CRSs and comprehensively 
assessed their prediction performance. Therefore, the objective of this study is to develop a PRS, 
protein biomarker model and ECG model to individually and collectively add to the CHARGE-
AF CRS to improve AF risk prediction. We will then comprehensively assess all model 
combinations to identify the best combined model for optimal prediction of AF risk. We will also 
perform cross-sectional analyses for prevalent AF risk to assess for performance of our models to 
detect covert AF.  

 
5. Main Hypothesis/Study Questions: 
 

1) Aim 1: Evaluate four individual predictive models for AF: 1) CRS (CHARGE-AF); 2) 
PRS; 3) Protein biomarker (Somalogic V3 & V5); 4) ECG (pretrained AI).   

 
2) Aim 2: Assess the performance of each combination of predictive model to predict AF 

risk.  
 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study design:  

1. Prevalent AF – cross-sectional analysis at visit 3 and visit 5 (separately). 
2. Incident AF – prospective observational analysis from visit 3 and visit 5 (separately) until 

2019). Will consider follow up restriction to within 5 or 10 years.  
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Study population:  

1) Inclusion criteria:  
a. CHARGE-AF CRS model: ARIC participants attending visit 3 or visit 5 with 

available covariates (CHARGE-AF clinical variables). 
b. PRS model: ARIC participants attending visit 3 or visit 5 with available genotype 

data.  
c. Protein biomarker model: ARIC participants attending visit 3 or visit 5 with 

available Somalogic plasma proteomics data. 
d. ECG model: ARIC participants attending visit 3 or visit 5 with available 12-lead 

ECG. 
e. Combined model: ARIC participants attending visit 3 or visit 5 with available 

genotype, plasma proteomics, ECG signals and covariates. 
2) Exclusion criteria:  

a. Participants with prevalent HF, race other than Black or White, Black participants 
in Minneapolis or Washington County field centers. 

b. For incident AF analyses, we will exclude participants with prevalent AF. 
 

Variables:  
1) CHARGE-AF Clinical Variables 

a. We will fit regression models for prevalent AF or incident AF by 11 clinical variables 
in CHARGE-AF for 12,887 participants (visit 3) and 6,538 participants (visit 5). The 
variables are age, race, height, weight, systolic blood pressure, diastolic blood 
pressure, current smoking, antihypertensive medication use, diabetes, prevalent heart 
failure and prevalent myocardial infarction. 

2) PRS 
a.  We will use a published PRS model with its weights for 1,091,491 SNPs (11) to 

calculate a PRS for the ARIC data. The weights were calculated using method PRS-CS 
(12) based on an AF GWAS dataset of over 300,000 Finnish participants in FinnGen 
Biobank (13) and the 1000 Genomes Project European samples (14) as the reference 
panel. We will use the genetic data of 10,348 participants (visit 3) and 5,247 
participants (visit 5) in ARIC.  

3) Protein biomarkers 
a. We will utilize Somalogic-quantified plasma protein levels (approximately 5000 

proteins) for 11,471 participants (visit 3) and 5,193 participants (visit 5). To predict 
AF based on the ARIC proteomics, we will develop regression models with a lasso 
penalty as well as a residual neural network. Sure Independence Screening (SIS) will 
be applied before lasso and the neural network to select predictors marginally (15). We 
then will apply 5-fold cross validation to tune hyper-parameters (with 10 candidate 
values). For SIS, we will select ⌊𝑛𝑛/ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 ⌋ proteins, where n is the sample size in the 
training data. 

4) ECG   
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a. We will utilize 12-lead ECG data from 12,730 participants (visit 3) and 5,946 participants 
(visit 5). A pre-trained convolutional neural network (CNN) model will be applied to 
predict AF based on the ECG data and the architecture of this CNN model is based on 
an inception neural network in an incident AF prediction paper (16). The inception 
network model involves 4 inception blocks and each block concatenates results from 3 
CNN layers with different filter numbers. 

 
Outcome: Prevalent AF and Incident AF (until 2019), ascertained by hospitalization discharge 
codes, study visits and ambulatory patch-based rhythm monitoring. 
 
Statistical analysis: 

1) Prevalent and incident AF 
a. We will assess, individually and collectively, the PRS, protein biomarker, and 

ECG-enhanced AF risk prediction models by assessing discrimination (Harrell’s 
C statistic and its 95% CI) and calibration (Hosmer-Lemeshow χ2 statistic).  

 
2) Sensitivity analyses 

a. Survival bias –we will consider inverse probability weighting and adjusting for 
the competing risk of death.  

b. Since renal function can affect plasma proteins, we will explore adjusting for 
estimated glomerular filtration rate in the protein biomarker model 

c. Prediction model optimism – we will correct for prediction model optimism by 
performing internal cross-validation (18). Depending on analysis results and data 
availability, we will consider external cohort validation.  

   
3) Limitations:  

a. Underascertainment of incident AF – we will report AF incidence rates and 
compare this with other studies examining AF risk to ensure our rates of 
ascertained AF are clinically relevant.  

b. We are using a PRS derived from European ancestry participants in both Blacks 
and Whites. We will also assess the performance of the PRS stratified by race to 
examine the applicability of the PRS to Black participants.  

 
7.a. Will the data be used for non-ARIC analysis or by a for-profit organization in this 
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